Bookmark and Share

Our solar system began forming about 5 billion years ago, when a cloud of gas and dust between the stars in our Milky Way Galaxy began contracting. A nearby supernova—an exploding star—may have started the contraction, but most astronomers believe a random change in density in the cloud caused the contraction. Once the cloud—known as the solar nebula—began to contract, the contraction occurred faster and faster. The gravitational energy caused by this contraction heated the solar nebula. As the cloud became smaller, it began to spin faster, much as a spinning skater will spin faster by pulling in his or her arms. This spin kept the nebula from forming a sphere; instead, it settled into a disk of gas and dust.

In this disk, small regions of gas and dust began to draw closer and stick together. The objects that resulted, which were usually less than 500 km (300 mi) across, are the planetesimals. Eventually, some planetesimals stuck together and grew to form the planets. Scientists have made computer models of how they believe the early solar system behaved. The models show that for a solar system to produce one or two huge planets like Jupiter and several other, much smaller planets is not unusual.

The largest region of gas and dust wound up in the center of the nebula and formed the protosun (proto is Greek for “before” and is used to distinguish between an object and its forerunner). The increasing temperature and pressure in the middle of the protosun vaporized the dust and eventually allowed nuclear fusion to begin, marking the formation of the Sun. The young Sun gave off a strong solar wind that drove off most of the lighter elements, such as hydrogen and helium, from the inner planets. The inner planets then solidified and formed rocky surfaces. The solar wind lost strength. Jupiter’s gravitational pull was strong enough to keep its shroud of hydrogen and helium gas. Saturn, Uranus, and Neptune also kept their layers of light gases.

The theory of solar system formation described above accounts for the appearance of the solar system as we know it. Examples of this appearance include the fact that the planets all orbit the Sun in the same direction and that almost all the planets rotate on their axes in the same direction. The recent discoveries of distant solar systems with different properties could lead to modifications in the theory, however.

Studies in the visible, the infrared, and the shortest radio wavelengths have revealed disks around several young stars in our galaxy. One such object, Beta Pictoris (about 62 light-years from Earth), has revealed a warp in the disk that could be a sign of planets in orbit. Astronomers are hopeful that, in the cases of these young stars, they are studying the early stages of solar system formation.


Our Followers

Speak to us !

Creative Commons License [Valid RSS] [Valid Atom 1.0] Trust Seal