The Sun’s gravitational pull holds the solar system together. The planets, asteroids, comets, and dust that make up our solar system are strongly attracted to the Sun’s huge mass. This gravitational attraction keeps these bodies in orbit around the Sun. The Sun also influences the solar system with its diffuse outer atmosphere, which expands outward in all directions. This expanding atmosphere fills the solar system with a constant flow of tiny, fast, electrically charged particles. This flow is called the solar wind. The region through which the solar wind blows is called the heliosphere. Estimates vary about the extent of the heliosphere, ranging from about 86 to about 100 times the distance between Earth and the Sun. Interstellar winds may give the heliosphere an egg shape. The solar wind spreads out as it leaves the Sun. The point at which the solar wind is so diffuse that it stops having an effect on its surroundings is called the heliopause. The heliopause marks the outer edge of the solar system.
Within the heliosphere, the Sun provides most of the heat and light that are present, and the particles in the solar wind interact with the planets and satellites in the solar system. The solar wind causes auroras—displays of colored light—in the atmosphere of Earth’s polar regions. The solar wind also carries remnants of the Sun’s magnetic field, which affect the magnetic fields of the planets and larger satellites. The solar wind pushes the planets’ magnetic fields away from the Sun, turning them into elongated, windsock shapes. For more information, see the Solar Wind section of this article.