Bookmark and Share

Neutron stars are the collapsed cores sometimes left behind by supernova explosions. Pulsars are a special type of neutron star. Pulsars and neutron stars form when the remnant of a star left after a supernova explosion collapses until it is about 10 km (about 6 mi) in radius.

At that point, the neutrons—electrically neutral atomic particles—of the star resist being pressed together further. When the force produced by the neutrons balances the gravitational force, the core stops collapsing. At that point, the star is so dense that a teaspoonful has the mass of a billion metric tons.

Neutron stars become pulsars when the magnetic field of a neutron star directs a beam of radio waves out into space. The star is so small that it rotates from one to a few hundred times per second. As the star rotates, the beam of radio waves sweeps out a path in space. If Earth is in the path of the beam, radio astronomers see the rotating beam as periodic pulses of radio waves. This pulsing is the reason these stars are called pulsars.

Some neutron stars are in binary systems with an ordinary star neighbor. The gravitational pull of a neutron star pulls material off its neighbor. The rotation of the neutron star heats the material, causing it to emit X rays. The neutron star’s magnetic field directs the X rays into a beam that sweeps into space and may be detected from Earth. Astronomers call these stars X-ray pulsars.

Gamma-ray spacecraft detect bursts of gamma rays about once a day. The bursts come from sources in distant galaxies, so they must be extremely powerful for us to be able to detect them. A leading model used to explain the bursts is the merger of two neutron stars in a distant galaxy with a resulting hot fireball. A few such explosions have been seen and studied with the Hubble and Keck telescopes.


Our Followers

Speak to us !

Creative Commons License [Valid RSS] [Valid Atom 1.0] Trust Seal