Bookmark and Share


Sometimes stars brighten many times more drastically than novas do. A star that had been too dim to see can become one of the brightest stars in the sky. These stars are called supernovas. Sometimes supernovas that occur in other galaxies are so bright that, from Earth, they appear as bright as their host galaxy.







There are two types of supernova. One type is an extreme case of a nova, in which matter falls from a giant or supergiant companion onto a white dwarf. In the case of a supernova, the white dwarf gains so much fuel from its companion that the star increases in mass until strong gravitational forces cause it to become unstable. The star collapses and the core explodes, vaporizing much of the white dwarf and producing an immense amount of light. Only bits of the white dwarf remain after this type of supernova occurs.



The other type of supernova occurs when a supergiant star uses up all its nuclear fuel in nuclear fusion reactions. The star uses up its hydrogen fuel, but the core is hot enough that it provides the initial energy necessary for the star to begin “burning” helium, then carbon, and then heavier elements through nuclear fusion. The process stops when the core is mostly iron, which is too heavy for the star to “burn” in a way that gives off energy. With no such fuel left, the inward gravitational attraction of the star’s material for itself has no outward balancing force, and the core collapses. As it collapses, the core releases a shock wave that tears apart the star’s atmosphere. The core continues collapsing until it forms either a neutron star or a black hole, depending on its mass.



Only a handful of supernovas are known in our galaxy. The last Milky Way supernova seen from Earth was observed in 1604. In 1987 astronomers observed a supernova in the Large Magellanic Cloud, one of the Milky Way’s satellite galaxies (see Magellanic Clouds). This supernova became bright enough to be visible to the unaided eye and is still under careful study from telescopes on Earth and from the Hubble Space Telescope. A supernova in the process of exploding emits radiation in the X-ray range and ultraviolet and radio radiation studies in this part of the spectrum are especially useful for astronomers studying supernova remnants.

 

Our Followers

Speak to us !

Creative Commons License [Valid RSS] [Valid Atom 1.0] DMCA.com ScanVerify.com Trust Seal