Many stars vary in brightness over time. These variable stars come in a variety of types. One important type is called a Cepheid variable, named after the star delta Cephei, which is a prime example of a Cepheid variable. These stars vary in brightness as they swell and contract over a period of weeks or months. Their average brightness depends on how long the period of variation takes.
Thus astronomers can determine how bright the star is merely by measuring the length of the period. By comparing how intrinsically bright these variable stars are with how bright they look from Earth, astronomers can calculate how far away these stars are from Earth. Since they are giant stars and are very bright, Cepheid variables in other galaxies are visible from Earth. Studies of Cepheid variables tell astronomers how far away these galaxies are and are very useful for determining the distance scale of the universe. The Hubble Space Telescope (HST) can determine the periods of Cepheid stars in galaxies farther away than ground-based telescopes can see. Astronomers are developing a more accurate idea of the distance scale of the universe with HST data.
Cepheid variables are only one type of variable star. Stars called long-period variables vary in brightness as they contract and expand, but these stars are not as regular as Cepheid variables. Mira, a star in the constellation Cetus (the whale), is a prime example of a long-period variable star. Variable stars called eclipsing binary stars are really pairs of stars. Their brightness varies because one member of the pair appears to pass in front of the other, as seen from Earth. A type of variable star called R Coronae Borealis stars varies because they occasionally give off clouds of carbon dust that dim these stars.